The Effects of Wearing Compression Wear During Exercise Performance and Recovery

Daisuke Takahashi Hirohiko Takahashi

Abstract

The purpose of this study was to investigate the effect of wearing compression wear during exercise performance and recovery sessions with each of the four compression wears (short type 'Short', long type 'Long', the front of the compression wear cut off 10cm long type 'Long10', and the front of the compression wear cut off 15cm long type 'Long15') and a control garment. Research : 1) Ten male general college-age students participated in this study. Ten male college-age students performed maximum power during explosive bicycle pedaling exercise and recovery sessions. Research : 2) Eight male general college-age students participated in this study. Eight male college-age students performed uphill walking exercise and recovery sessions. The results were summarized as follows : A) At four compression wears and a control garment, 'Long' at the most high maximum power. B) Tibialis anterior stiffness at 'Short' 'Long' 'Long10' and 'Long15' were reduced. C) At four compression wears and a control garment, Romberg's sign at 'Long15' was higher than that at 'Short' 'Long' and 'Long10'. These results suggest that in explosive pedaling exercise, different four types compression wears, influences on muscles of lower limb.

Key words: compression wear, exercise, recovery
1. 結言
近年、オリンピックやワールドカップ、世界選手権などの各種スポーツの様々な場面において、スポーツウェアやユニフォーム、その他使用する用具の改良が着実な更新や順応に影響を及ぼすようになってきている。競技者自身が使用する用具や身につけるウェア等を適切に選ぶ事の重要性も増している。
最近ではコンプレッションウェアを着用するトップアスリートが一般のスポーツ愛好家を多くの目にするようになった。コンプレッションウェアが日本において、スポーツで使用することを目的として初めて一般向けに販売されたのは1991年とされている（佐藤、2009）。それ以前は、主として医療分野で使用されており、海外において医学的臨床研究が1980年代ごろから行われていたとする報告がある（山本ほか、2009）。日本においてもコンプレッションウェアは弾性ストッキングという呼称で主に医療用として普及してきている。この医療用弾性ストッキング着用の目的は、血流の停滞と静脈壁の損傷を予防することにある。実際に下肢静脈瘤やリンパ浮腫などの治療（平井ほか、2005）及び術後の深部静脈血栓症予防への効果（戸部ほか、2003）として症例報告がなされている。弾性ストッキングの段階圧負荷実験においては、足関節から膝部、大腿遠位部にかけて18mmHgから8mmHgの圧をかけることにより、大腿静脈流速を138.4%に増加させることができるとの報告（早田ほか、2006）がある。運動中の医療用弾性ストッキング着用の効果を検討した研究では、下肢静脈瘤や下肢静脈血栓症などの下肢静脈血栓疾患患者を対象として、歩行中における下肢の水分蓄積が抑制されたとの報告がある（Agou ほか、2004；Ibebughara, V ほか、2003）。また、安静時の効果を検討した研究では、下肢静脈血栓症患者や術者に対して医療用弾性ストッキング着用させるとの報告がある（Agou ほか、2004；平井ほか、1995；Bringuard, A ほか、2006；早田ほか、2006）。一方、運動に対する効果としては、運動後の回復期における血中乳酸濃度が低下したという報告（Kemmler, W ほか、2006）や、低強度運動において弾性型インパクトストッキングを着用することで生理的な回復を促進させる効果が見られたという報告（Gill, N. ほか、2006）がある。また、低活性度の走行中においてエネルギー消費量が減少したとする報告（平井ほか、2004）がある一方で、走行後の酸素残存量、心拍数、血中乳酸濃度に差がなかったとする報告（杉田ほか、2000）があるが、健康者に対する下肢用コンプレッションウェア着用の効果についての報告は一定の見解を得るには至っていない。また、下肢用コンプレッションウェアの形状は絞り状や筋の弾性を利用して断面を縮小したもので、着用後はそれぞれの動きを制御しない形のものが多くとどまる。このことから、既存の亜一式タイプで膝蓋関節の屈曲や大腿部を近位部に近づけるような加工を施すことにより身体活動への補助効果が期待できる可能性がある。足部がベルダールと固定された競技者の自動車運動において、ベダリングの40%が下死点からの引き足動作で構成されているという報告がある（藤井ほか、2006）。このように下死点上にあるときベルダールには、足を体勢12%の重量が加わるとされ、非熟練者がベダリング動作を行った場合、熟練者に比べエネルギー消費量が増大しベダリングスキルが劣るとの報告もある（藤井ほか、2006）。また、歩行実験において、接地面から後方にある脚を前方に振り出すに、重力に逆らう力までを体に引きずらずに脚を持ち上げる必要がある（藤井ほか、2009）と同時に、特に斜面においては適度な股関節の屈曲動作が安全で効率的な歩行動作をつなげるものと考えられる。実際には、コンプレッションウェアに直接加工を加えたものとして着びっくり機能付きの足首サポート（平井ら、2004）があり、疾患の既往歴がある者やリハビリテーション中の患者に対するサポートや固定装置の着用による身体活動への影響を示した研究（牧原ほか、2004；栗山ほか、1994）や、健康者を対象として圧縮的な歩行運動や、自転車の運動運動での疲労感をかえて持続できるように加工での運動パフォーマンスの変化、身体の応答についての報告（高橋ほか、2007）も存在するもので、圧縮や固定装置の加工を施した弾性タイプを着用した身体への影響を検討した報告は見当たらない。本研究ではコンプレッションウェア着用によ
コンプレッションウェアの着用が運動及び休息時に与える影響について

下肢への圧迫が、転車運動や歩行運動中の身体への影響について明らかにすると、形状にも着目して検討することを目的とした。

なお本論文における、コンプレッションウェアの着用として高橋ら(2001)、高橋ら(2009)の報告を参考に、腹部・膝部から足関節上部までを覆うものを弾性タイツ、膝部・膝部から大腿部までを覆うものをスパッツとし、この2つを総称してコンプレッションウェアとそれぞれ統一して記述する。

II. 研究方法

II-1 コンプレッションウェアの着用が無酸素パーソナルトレーニングに及ぼす影響について

II-1-1 被験者

被験者は本実験に参加することに同意の得られた大学生10名とした。身体的特性は年齢21.8±0.6歳、身長170.7±7.1cm、体重71.0±12.7kgであった。

II-1-2 実験条件

(1) 実験期間及び環境条件

実験は2010年4月～6月にかけて実施した。サーガディアンリズムを考慮し、各実験は全て同一の時間帯に人工気象室内で実施された。人工気象室の環境条件は室温25℃、湿度50％に制御した。

(2) 測定項目及び手順

測定項目はパワーバー、心拍数、血中乳酸濃度、呼吸数及び運動強度（以下RPE）であった。心拍数はスポーツコンピュータ6101（Polar社製）を使用し、実験開始から終了まで継続して記録した。血中乳酸濃度はラクトートプロ（ARKRAY社製）を用いて指先から採血した。呼吸数は心電図計グラビコンダーガ5-7（アイマ社株式会社製）を使用し、開眼、閉眼共に60秒間計測を行った。各測定はwarming-up（以下w-up）前、exercise（以下ex）1, 2, 3後、85分、実験終了後に行なった。被験者を実験開始時間の30分前、25℃に設定された人工気象室にて休息させた後に実験を行った。

写真1. コンプレッションウェア

(4) 統計処理

各項目で平均値及び標準偏差を求めた。各条件における統計処理は、再現性における血中乳酸酸度の各項目の平均値の差の有効性に関する検定には一元配置分散分析を行い、有意差が認められた場合にはTukey多重比較検定を行い、有意水準は5%未満とした。その他の項目の平
均値の有意差に関する検定には繰り返しの二元配置分散分析を用い、有意水準は5%未満とした。統計処理はSPSS12.0J for windowsを用いて行なった。

II-2 コンプレッションウェアの着用が歩行運動に及ぼす影響について

II-2-1 被験者

被験者は本実験に参加することに同意の得られた健康な男子大学生8名とした。身体的特性は年齢21.8±1.0歳、身長173.5±6.7cm、体重67.2±7.9kgであった。

II-2-2 実験条件

(1) 実験時間及び環境条件

実験は2010年9月~11月にかけて実施した。サーカディアンリズムを考慮し、各実験は同一の時間帯にて実施された。環境条件は室温25℃、相対湿度50%に制限した。

(2) 測定項目及び手順

測定項目には心拍数、血中乳酸濃度、体重、急性収支、筋硬度、酸素摂取量（以下VO2）、呼吸差（以下R）、RPE、視覚的評価スケール（以下VAS）の項目を測定した。心拍数はスポーツ心拍計SE101（POLAR社製）を、呼気ガス分析には呼吸代謝測定システムAE-285RCA（ミノタ医科学社製）を使用し、ex開始直後からrec終了時間まで常時モニタリングした。血中乳酸濃度はラクテート・プロ（ARKRAY社製）を用い、指示の高めから採血した。体重は体重計を用い、筋硬度は筋硬度計（TRY-ALL社製NEUTONE TDM-1N）を使用し、測定部位は下顎前頭筋後頭筋、大腿後頭面大腿直筋、大腿後頭面大腿外側筋、大腿後頭面大腿内側筋の5ヶ所とした。各項目は測定の際、筋部に囲具を当てて測定した。1ヶ所につき計4回測定を行い、最大値と最小値を除外した2回の平均値を定著とした。

被験者を実験開始時間の30分前に、室温25℃に設定された人工気象室前室に入室させ体位安静を保たせた。その後体重を工業用台はかりにて測定した後、人工気象室内に入室させた。仰臥位と腹臥位にて下肢の筋硬度を測定した後、重心動揺を計測し、VASの記入とRPEの解答を求めた。その後呼気ガス摂取量のマスクを装着させ、トレッドミルAE255A（ミノタ医科学社製）にて歩行運動を開始した。マスク装着後、5%斜度、60分間のexを開始し、終了後仰臥位でのrecを行った。RPE、VASはex前とrec開始後rec終了時まで10分間隔で申告させた。血中乳酸濃度はex前と30分経過時、ex終了時、rec終了時の計4回測定した。筋硬度はex前とrec終了時の3回測定した。

(3) 着衣条件及び衣類組成

II-1の実験に準ずるものとした。

(4) 統計処理

各項目で平均値及び標準偏差を求めた。着衣条件における血中乳酸除去率の各項目の平均値の有意性に関する検定には一元配置分散分析を用い、有意差が認められた場合にはTukey多重比較検定を行い、有意水準は5%未満とした。その他の項目の平均値の有意差に関する検定には繰り返しの二元配置分散分析を用い、有意水準は5%未満とした。統計処理はSPSS12.0J for windowsを用いて行なった。

III. 結果

III-1 コンプレッションウェアの着用が無酸素バーサーサルに及ぼす影響について

(1) パフォーマンスの比較

無酸素バーサル値はし群が38.8±7.0w/kgで最も高値を示した（図1）。ex2、ex3における各被験者個々の無酸素バーサルテスト成績ではex2において特にロックツイスト着用群に対して減少傾向を示す被験者が多いために対し、ex3ではし群で増加傾向を示す被験者が多かった。

図1.実験II 各着衣条件における総パワー
(2) 主運動及び休息時の生理的反応の比較

各着衣条件における各 ex 中の平均心拍数は各 ex 共に C 群に比較し S 群、L10 群、L15 群で低値を示す傾向にあった。各 ex で最も低値を示したのが ex1 において L15 群で 129.9 ±12.2 bpm、ex2 において L 群で 135.2 ±5.2 bpm、ex3 においては L15 群で 133.9 ±10.7 bpm であった。血中乳酸濃度の比較では ex1、ex3 において L 群が C 群に比較しコンプレッションウェア着用群が高値を示す結果となった。rec における血中乳酸除去率では L 群が 50.9 ± 17.7% で最も高値を示す傾向にあった。

(3) 主観的運動強度の比較

ex3 後に最も低値を示したのが L15 群で 16.6 ± 1.0 であった。rec2 においても最も低値を示したのが C 群で 8.7 ± 1.4 であった。

(4) 重心動揺

外周面積におけるコンプレッション率を各群に比較し、ex3 終了後には S 群が最も高値を示し、rec2 では L 群が最も高値を示す傾向にあった。

III-2 コンプレッションウェアの着用が歩行運動に及ぼす影響について

(1) 主運動及び休息時の生理的反応の比較

各着衣条件における各 ex 中の平均心拍数においては L15 群が最も低値を示し 123.3 ± 5.4 bpm であった。rec における心拍数は L15 群で最も低値を示し 75.3 ± 15.4 bpm であった。血中乳酸除去率は L 群が 4.3 ± 2.6% で最も高値を示す傾向にあった。

酸素摂取量（以下 VO2）において、ex では C 群に比較して L 群、L10 群が共に有意な低値（P < 0.01）を示した（図 2）。C 群は 21.1 ± 3.7 mL/kg/min、L 群 20.4 ± 1.3 mL/kg/min、L10 群 20.3 ± 1.3 mL/kg/min であった。呼吸商（以下 R）において ex、rec 共に L 群が最も低値を示す傾向にあった。

(2) 筋硬度

筋硬度の ex 前後の比較では L15 群は他の群と比較して全ての測定部位において低値を示す傾向にあった。rec の比較において S 群と L 群では全ての測定項目で下限値を示し、各被験者個々の ex 後、rec 後の筋硬度成績では S 群、L10 群、L15 群においては rec 後の筋硬度成績が減少傾向を示す被験者が多かった。特に下肢前面、下肢後面では S 群、L10 群、L15 群で減少傾向を示す被験者が多かった（表 1・2）。

(3) 主観的感覚の比較

RPE は全ての条件において、rec が ex に比較し低値を示す傾向にあった。ex での各条件の比較では、L 群が 10.7 ± 1.0 で「楽である」と主訴を示し最も低値を示す傾向にあった。VAS の ex と rec の比較では、全ての条件において、rec が ex に比較し減少傾向を示した。ex での各条件の比較では S 群、L 群、L10 群、L15 群は全て C 群よりも低値を示し、L 群が 28.1 ± 4.1 mm で最も低値を示す傾向にあった。

(4) 重心動揺

外周面積におけるコンプレッション率については、ex 前後と rec 前後の変化において C 群、L10 群、L15 群が、ex 前後に比較し rec 前後に緩やかに上昇傾向を示した。

図 2. 実験Ⅱ 各着衣条件における酸素摂取量

表 1. 実験Ⅱ exercise 後の筋硬度成績

<table>
<thead>
<tr>
<th>品目</th>
<th>C群</th>
<th>S群</th>
<th>L群</th>
<th>L10群</th>
<th>L15群</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>68.3±9.2</td>
<td>70.2±8.3</td>
<td>71.5±8.5</td>
<td>72.8±8.6</td>
<td>74.1±8.7</td>
</tr>
<tr>
<td>2</td>
<td>69.2±8.4</td>
<td>71.3±8.5</td>
<td>72.6±8.6</td>
<td>73.9±8.7</td>
<td>75.2±8.8</td>
</tr>
</tbody>
</table>

表 2. 実験Ⅱ recovery 後の筋硬度成績

<table>
<thead>
<tr>
<th>品目</th>
<th>C群</th>
<th>S群</th>
<th>L群</th>
<th>L10群</th>
<th>L15群</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>68.3±9.2</td>
<td>70.2±8.3</td>
<td>71.5±8.5</td>
<td>72.8±8.6</td>
<td>74.1±8.7</td>
</tr>
<tr>
<td>2</td>
<td>69.2±8.4</td>
<td>71.3±8.5</td>
<td>72.6±8.6</td>
<td>73.9±8.7</td>
<td>75.2±8.8</td>
</tr>
</tbody>
</table>
IV. 考察

IV-1 コンプレッションウェアの着用が無酸素バターチェーンの反応に及ぼす影響について

総バターチェーンの比較では、群が38.8±7.0/3kg
で最も高値を示し、次いでS群が60.0±6.5/3kg
でほぼ同値を示した。山崎ら（1994）の報告
によれば、自転車車足行では下肢の運動を妨げない
ような着衣態度が必要であるとし、両脚の生地
の引き合い動作の干渉が少ない衣類を着用す
ることを指示している。被験者からの任意の意
見の中には、運動時に膝周りのタイツの圧迫感
が不快だったという意見があった。S群では生
地面積が少なく、自転車車足行の干渉が最小
限に抑えられた可能性が考えられる。

血中乳酸濃度は全体への負担を示す指標の一
つであるとされている（八田、2006）。血中乳酸
除去率ではS群が最も高値を示し、運動によ
り骨格筋で生成された乳酸は血液中へ拡散し筋
細胞へ蓄積される。この蓄積された乳酸を素早
く除去できるかが運動効果のためには重要である
とされている（石波ら、1988）。無酸素バターチ
テストのような激運動では活動筋の血液供給が多
く、筋への血液供給が増加する。今回はの結果か
らS群が50%程度の血中乳酸除去率を示している
ことから、弾性タイツの圧迫は血流循環を阻害
することなく乳酸除去を速やかに行われたと
考えられる。名取ら（2009）によれば、膝周
围静脈を覆うことで静脈血液流を増大させ静脈還
流を促進させることができると述べている。C
群、S群では膝周圍静脈を覆うことができない為、
弾性タイツ着用群で血中乳酸除去がより促進さ
れたと考えられる。

RPEにおいては疲労感や努力感のような主観
的な指標がひとつに基準となっていることから、
被験者の精神状態の介入は避けられない（山崎
ほか、2000）とされている。今回の実験ではRPE
が各着衣条件においてほぼ同値を示しながら推
移したのは、全力パワーリングという高強度の運
動によって、各被験者に強い疲労感を引き出し
た結果と考えられる。しかし弾性タイツの着用
は非着用に対し、自覚的疲労度の降順傾向を示
すという報告（名取ほか、2009）がある。RPEの
各ex毎の変化においてex1では「きつい」、ex2、
3では「不快さきつい」を申告しており変化が
ほぼ同値を示していることから、疲労感の変度
の上昇を抑制する効果が期待できる可能性があ
る。

IV-2 コンプレッションウェアの着用が歩行運
動に及ぼす影響について

歩行運動は、慣性のかつ無意識的に行われて
いることから、最も身近な運動形態といえる。
厚生労働省（以下厚労省）が2006年に制定した
ガイドラインによれば生活習慣病を予防する観
点から、身体活動量を23METs・h/week、運動量
として4METs・h/week行うことを推奨している
（厚労省、2006）。本実験の運動負荷を照らし合
わせてみると、4～5METs・h/weekに相当することか
ら、本測定結果は一般成人の指標として適応で
きると考えられる。

筋硬度においては斜面歩行時の重要な作用筋で
ある筋筋皮質周辺の筋硬度が、非着用群に比べ
してコンプレッションウェア着用群が減少してい
た。段階的弾性タイツの効果は、筋のミルキ

80
コンプレッションウェアの着用が運動及び休息時に与える影響について

NGアクションを促進し、下肢静脈還流を促すことで浮腫を抑制すると言われている（橋本，名塚ら，2009）。筋トレは筋緊張と血液の粘性が関係していると言われており（川内ら，1992）、運動により疲労物質が蓄積すると毛細血管径が減少し、血液の粘性抵抗が増大する。これらは浮腫をもしく、筋の硬さを招く原因の一つとしてされている（川内ら，1992）。今後の筋力の結果から、下背部を覆っていたS群、L1群、L15群において筋硬度が減少していた被験者数が多くあったことから、下肢を覆うことによってミルキングアクションを促進し下肢静脈還流を抑制するため、一回拍出量が減少させ、筋肉の上昇が抑えられたためと考えることが出来る。

RPEにおいては、各群とともに有意な差は得られなかった。exにおいては「かなり楽である」～「やや楽である」の申告があった。その後recにおいては「非常に楽である」～「かなり楽である」という申告があった。川内ら（2006）によれば歩行運動中に弾性タイツを着用することで下肢部に不快感を与えることなく活動できるRPEを有意に低下させると報告している。山田ら（2001）の報告によれば、タイツの着用効果を決定する要因は「着用しやすさ」「圧迫感」「動きやすさ」であるとしている。また0.1～0.3MPaのわずかな圧変化が生体に反応することを示していることから、特に運動パフォーマンスの向上を目指す場合、弾性タイツ着用は特に各に合った適切なサイズを選択することが大切であると考えられる。VASにおいては最も高値を示したC群においても32.5±3.5mmとなり、これは被験者に対する運動負荷が低く、各群で変化が見られなかったものと考えられる。

肺での酸素摂取は赤血球に含まれるヘモグロビンが、酸素分圧の高い肺内空気を吸収することで酸素と結合し、肺を流れている血液量が多いほど、赤血球が多く肺の空気と触れることになり、VO2が高まる。今回の結果から、C群よりもコンプレッションウェア着衣群が低値を示し、中でもS群が最も低値を示した。

このことから、VO2を低く抑えることが出来る弾性タイツ着用は、運動障害抑制上向かう高強度運動時パフォーマンス発揮が出来ると考えられている。（本田ら，2002）。また立位姿勢の保持に重要な中段筋、大腿筋、大腿四頭筋など静的な姿勢保持筋群は弾性タイツなどで圧迫することで、筋の幅の制限を抑制し、心動動脈を安定させ、疲労が軽減される（橋本，2009）とされている。また小川（1989）によれば足首部感受性は体性感受性の一つに分類されており、脳内の体性感受性野の破壊によって姿勢の異常が見られ、視覚からの情報により懸念、代償されるとしている。L15群においてもex前に比較しex後、rec後共に上昇傾向を示した事から、弾性タイツの加工がより姿勢を安定させ、体幹位置を認識するフィードバック機能を活用した可能性が考えられた。

V. まとめ

本研究では、コンプレッションウェアの一種としてスパッツ、及び弾性タイツを着用した際の運動機能への効果を見るために、自転車エルゴメーターを用いたペダリング運動とトレッドミルを用いた歩行運動という2つの違う運動形式で実験を行った。実験はスパッツや弾性タイツを着用することによって、無感覚のパフォーマンス発揮に対してパフォーマンスの向上を期待する場合、弾性タイツ着用には各に合った適切なサイズを選択することが大切であると考えられる。また、今回、既存の弾性タイツの前後部を裁断加工した弾性タイツ着衣条件として加えたが、運動能力向上に寄与する結果が得られなかった。その原因として弾性タイツの加工が自転車運動のペダルへの踏み込み動作や歩行時の股関節、膝関節の伸展動作に影響を及ぼした可能性が考えられる。適切なサイズを選択することも生理的反応に大きな影響する可能性を考えられた。
参考文献
藤井徳明: ランニングの科学. スキージャーナル株式会社. pp. 78–90, 2009
本田浩史: スピードスケート短距離種目におけるウォーミングアップの検討. 仙台大学大学院スポーツ科学研究科論文集. 5, 177–184, 2004
山本修: 運動指導者テキスト改定第3版. 南江堂. 11–38, 2007
栗山可奈・松下知子・手塚圭子: サポートストッキング著用による脚の周径の生理解増加の減少. 2004
教員としてのスポーツ・身体運動. 東京大学出版会編. pp24–64, 2004
名塚健史: スポーツ用弹性タイツの運動時着用効果について. 臨床スポーツ医学 26(8), 1047–1051, 2009
長谷照・佐藤信也・武田・西能: スポーツ動作の力学的分析. 腕の運動科学. 2009
佐藤 聡: エクストリーム・ウェア 完極の服をつくる技術. 技術 論評誌. pp24–33, 2009
高橋弘幸・内川真・竹村英和: 運動時間におけるストッキング着用の効果に関する検討. 第61回日本体育学会予稿集. 308, 2009
山下恵子・篠原和生・近藤満: 作業効率から見た自転車運動中における下半身用衣類の検討. 日本家政学会誌. 45(9):403–410, 1994
山本利春: コンプレッション衣類の有効性の測定. スポーツメディシン. 21(6), 2–29, 2009

82